Câu hỏi:
03/04/2024 37
Đội tuyển học sinh giỏi môn toán của trường THPT Kim Liên gồm có: 5 học sinh khối 10; 5 học sinh khối 11; 5 học sinh khối 12. Chọn ngẫu nhiên 10 học sinh từ đội tuyển đi tham dự kì thi AMC. Có bao nhiêu cách chọn được học sinh của cả ba khối và có nhiều nhất hai học sinh khối 10?
A. 50.
B. 500.
C. 501.
D. 502.
Trả lời:
Đáp án B
Phương pháp
Sử dụng kiến thức về tổ hợp và hai quy tắc đếm cơ bản.
Cách giải
TH1: Đội tuyển gồm 1 học sinh khối 10 và 9 học sinh của 2 khối 11 và khối 12.
Số cách chọn là: \[C_5^1.C_{10}^9 = 50\] cách.
TH2: Đội tuyển gồm 2 học sinh khối 10 và 8 học sinh của 2 khối 11 và khối 12.
Số cách chọn là: \[C_5^2.C_{10}^8 = 450\] cách.
Vậy có \[450 + 50 = 500\] cách chọn thỏa mãn yêu cầu đề bài.
Đáp án B
Phương pháp
Sử dụng kiến thức về tổ hợp và hai quy tắc đếm cơ bản.
Cách giải
TH1: Đội tuyển gồm 1 học sinh khối 10 và 9 học sinh của 2 khối 11 và khối 12.
Số cách chọn là: \[C_5^1.C_{10}^9 = 50\] cách.
TH2: Đội tuyển gồm 2 học sinh khối 10 và 8 học sinh của 2 khối 11 và khối 12.
Số cách chọn là: \[C_5^2.C_{10}^8 = 450\] cách.
Vậy có \[450 + 50 = 500\] cách chọn thỏa mãn yêu cầu đề bài.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho các hình vẽ sau:
Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?
Cho các hình vẽ sau:
Trong các hình trên, hình nào có trục đối xứng và đồng thời có tâm đối xứng?
Câu 5:
Cho hai đường tròn bằng nhau \[\left( {I;R} \right)\] và \[\left( {I';R'} \right)\] với tâm I và I’ phân biệt. Có bao nhiêu phép vị tự biến \[\left( {I;R} \right)\] thành \[\left( {I';R'} \right)\]?
Câu 6:
Có bao nhiêu số tự nhiên có sáu chữ số sao cho trong mỗi số đó chữ số sau lớn hơn chữ số trước?
Câu 7:
Khai triển đa thức \[P\left( x \right) = {\left( {\frac{1}{3} + \frac{2}{3}x} \right)^{10}} = {a_0} + {a_1}x + ... + {a_9}{x^9} + {a_{10}}{x^{10}}\]. Tìm hệ số \[{a_k}\left( {0 \le k \le 10;k \in \mathbb{N}} \right)\] lớn nhất trong khai triển trên.
Câu 8:
Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Cho hình chóp S.ABCD có đáy ABCD là hình thang \[\left( {AB//CD,AB = 2CD} \right)\]. Gọi M là trung điểm của cạnh SC.
a) Xác định giao tuyến của hai mặt phẳng \[\left( {SAB} \right)\] và \[\left( {SCD} \right)\].
b) Xác định giao điểm K của đường thẳng AM với \[mp\left( {SBD} \right)\]. Tính tỉ số \[\frac{{AK}}{{AM}}\].
Câu 9:
Tính giá trị của tổng \[T = C_{2019}^1 + C_{2019}^2 + C_{2019}^3 + ... + C_{2019}^{2018}\].
Câu 10:
Đề kiểm tra một tiết môn toán của lớp 12A có 25 câu trắc nghiệm, mỗi câu có 4 phương án trả lời trong đó chỉ có một phương án đúng. Một học sinh không học bài nên làm bằng cách chọn ngẫu nhiên mỗi câu một phương án. Tính xác suất để học sinh đó làm đúng đáp án 15 câu.
Câu 12:
Cho tứ diện ABCD có \[AB = BC = AC = CD = DB = a,AD = \frac{{a\sqrt 3 }}{2}\]. Gọi M là trung điểm của AB, điểm O là tâm đường tròn ngoại tiếp tam giác BCD. Đường thẳng AO cắt mặt phẳng \[\left( {MCD} \right)\] tại G. Tính diện tích tam giác GAD.
Cho tứ diện ABCD có \[AB = BC = AC = CD = DB = a,AD = \frac{{a\sqrt 3 }}{2}\]. Gọi M là trung điểm của AB, điểm O là tâm đường tròn ngoại tiếp tam giác BCD. Đường thẳng AO cắt mặt phẳng \[\left( {MCD} \right)\] tại G. Tính diện tích tam giác GAD.