Đồ thị hàm số y=ax^3+bx^2+cx+d có hai điểm cực trị A(1;-7)

Đồ thị hàm số y=ax3+bx2+cx+d có hai điểm cực trị A1;7B2;8. Tính y1

A. y1=11

B. y1=7

C. y1=35

D. y1=11

Trả lời
Chọn C
Ta có y'=3ax2+2bx+c
Điểm A1;7 và B2;8 là hai điểm cực trị nên y1=7y2=8y'1=0y'2=0
a+b+c+d=78a+4b+2c+d=83a+2b+c=012a+4b+c=0
a+b+c+d=77a+3b+c=13a+2b+c=012a+4b+c=0a=2b=9c=12d=12
Suy ra y=2x39x2+12x12. Vậy y1=35

Câu hỏi cùng chủ đề

Xem tất cả