Câu hỏi:
18/12/2023 92
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng:
Biết tanα = 2, giá trị của biểu thức \(M = \frac{{3\sin \alpha - 2\cos \alpha }}{{5\cos \alpha + 7\sin \alpha }}\) bằng:
A. \( - \frac{4}{9}\);
A. \( - \frac{4}{9}\);
B. \(\frac{4}{{19}}\);
B. \(\frac{4}{{19}}\);
C. \( - \frac{4}{{19}}\);
C. \( - \frac{4}{{19}}\);
D. \(\frac{4}{9}\).
D. \(\frac{4}{9}\).
Trả lời:
Đáp án đúng là: B
Cách 1: Vì cos α ≠ 0 nên chia cả tử và mẫu của M cho cosα ta có:
\(M = \frac{{3\frac{{\sin \alpha }}{{\cos \alpha }} - 2}}{{5 + 7\frac{{\sin \alpha }}{{\cos \alpha }}}} = \frac{{3.\tan \alpha - 2}}{{5 + 7.\tan \alpha }} = \frac{{3.2 - 2}}{{5 + 7.2}} = \frac{4}{{19}}\).
Cách 2: Ta có: \[\tan \alpha = 2 \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} = 2\left( {\cos \alpha \ne 0} \right) \Leftrightarrow \sin \alpha = 2\cos \alpha \], thay sinα = 2cosα vào M ta được \(M = \frac{{3.2\cos \alpha - 2\cos \alpha }}{{5\cos \alpha + 7.2\cos \alpha }} = \frac{{4\cos \alpha }}{{19\cos \alpha }} = \frac{4}{{19}}\).
Đáp án đúng là: B
Cách 1: Vì cos α ≠ 0 nên chia cả tử và mẫu của M cho cosα ta có:
\(M = \frac{{3\frac{{\sin \alpha }}{{\cos \alpha }} - 2}}{{5 + 7\frac{{\sin \alpha }}{{\cos \alpha }}}} = \frac{{3.\tan \alpha - 2}}{{5 + 7.\tan \alpha }} = \frac{{3.2 - 2}}{{5 + 7.2}} = \frac{4}{{19}}\).
Cách 2: Ta có: \[\tan \alpha = 2 \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} = 2\left( {\cos \alpha \ne 0} \right) \Leftrightarrow \sin \alpha = 2\cos \alpha \], thay sinα = 2cosα vào M ta được \(M = \frac{{3.2\cos \alpha - 2\cos \alpha }}{{5\cos \alpha + 7.2\cos \alpha }} = \frac{{4\cos \alpha }}{{19\cos \alpha }} = \frac{4}{{19}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Tam giác ABC có các cạnh a; b; c thỏa mãn điều kiện:
(a + b + c)(a + b – c) = 3ab. Khi đó số đo của góc C là.
Câu 3:
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Cho \[\cos \alpha = - \frac{4}{5}\] và góc α thỏa mãn 90° < α < 180°. Khi đó.
Câu 4:
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Tam giác ABC có các góc \(\widehat A = 75^\circ ,\widehat B = 45^\circ \). Tính tỉ số \(\frac{{AB}}{{AC}}\).
Câu 5:
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Cho tam giác ABC có a = 2, \[b = \sqrt 6 \], \[c = \sqrt 3 + 1\]. Tính bán kính R của đường tròn ngoại tiếp.
Câu 6:
Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng
Tam giác ABC vuông tại A có AB = 6 cm; BC = 10 cm. Đường tròn nội tiếp tam giác đó có bán kính r bằng
Câu 7:
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Tam giác ABC có \(AC = 3\sqrt 3 \), AB = 3, BC = 6. Tính số đo góc B
Câu 11:
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Tam giác ABC có các góc \(\widehat B = 30^\circ ,\widehat C = 45^\circ \), AB = 3. Tính cạnh AC.
Câu 12:
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Tính góc C của tam giác ABC biết a ≠ b và a(a2 – c2) = b(b2 – c2).
Câu 15:
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :
Kết quả rút gọn của biểu thức \(A = \frac{{\cos ( - 108^\circ ).\cot 72^\circ }}{{\tan ( - 162^\circ ).\sin 108^\circ }} - \tan 18^\circ \) là :