Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển
2.1k
10/06/2023
Bài 7 trang 86 Toán 10 Tập 2: Có hai con tàu A và B cùng xuất phát từ hai bến, chuyển động đều theo đường thẳng ngoài biển. Trên màn hình ra đa của trạm điều khiển (được coi như mặt phẳng tọa độ Oxy với đơn vị trên các trục tính theo ki-lô-mét), sau khi xuất phát t (giờ) (t ≥ 0), vị trí của tàu A có tọa độ được xác định bởi công thức: , vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t).
a) Tính côsin góc giữa hai đường đi của hai tàu A và B.
b) Sau bao lâu kể từ thời điểm xuất phát hai tàu gần nhau nhất?
c) Nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng bao nhiêu?
Trả lời
a) Giả sử đường đi của tàu A là đường thẳng ∆1, phương trình tham số của đường thẳng ∆1 là: . Đường thẳng ∆1 có vectơ chỉ phương là .
Đường đi của tàu B là ∆2, vị trí của tàu B có tọa độ là (4 – 30t; 3 – 40t), do đó phương trình tham số của đường thẳng ∆2: . Đường thẳng ∆2 có vectơ chỉ phương là .
Khi đó .
Vậy côsin góc giữa hai đường đi của hai tàu A và B là .
b) +) Ứng với t = 0, thay vào phương trình tham số của ∆1 ta có: .
Do đó điểm A(3; – 4) thuộc ∆1.
Đường thẳng ∆1 đi qua điểm A(3; – 4) và có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của ∆1 là:
5(x – 3) + 7(y + 4) = 0 hay 5x + 7y + 13 = 0.
+) Ứng với t = 0, thay vào phương trình tham số của ∆2 ta có: .
Do đó điểm B(4; 3) thuộc ∆2.
Đường thẳng ∆2 đi qua điểm B(4; 3) và có một vectơ pháp tuyến là .
Vậy phương trình tổng quát của ∆2 là:
4(x – 4) – 3(y – 3) = 0 hay 4x – 3y – 7 = 0.
+) Tọa độ giao điểm của hai đường thẳng ∆1 và ∆2 là nghiệm của hệ phương trình:
.
Hệ trên có nghiệm duy nhất .
Suy ra hai đường thẳng ∆1 và ∆2 cắt nhau tại điểm có tọa độ .
Khi đó hai tàu A và tàu B gần nhau nhất khi hai tàu ở vị trí tọa độ .
Thay tọa độ vào phương trình tham số ∆1 ta được:
.
Vậy sau giờ kể từ thời điểm xuất phát thì hai tàu gần nhau nhất.
c) Tàu A đứng yên ở vị trí ban đầu nên tàu A đứng ở vị trí có tọa độ A(3; – 4) (ứng với t = 0).
Khoảng cách ngắn nhất giữa hai tàu là khoảng cách từ điểm A đến đường đi của tàu B (đường thẳng ∆2: 4x – 3y – 7 = 0).
Ta có: d(A, ∆2) = .
Vậy nếu tàu A đứng yên ở vị trí ban đầu, tàu B chạy thì khoảng cách ngắn nhất giữa hai tàu bằng 3,4 km.
Xem thêm lời giải bài tập SGK Toán lớp 10 Cánh diều hay, chi tiết khác:
Bài 2: Biểu thức tọa độ của các phép toán vectơ
Bài 3: Phương trình đường thẳng
Bài 4: Vị trí tương đối và góc giữa hai đường thẳng. Khoảng cách từ một điểm đến một đường thẳng
Bài 5: Phương trình đường tròn
Bài 6: Ba đường conic
Bài tập cuối chương 7