Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1, 2, 3 luôn đứng cạnh nhau

Câu 40: Có bao nhiêu số tự nhiên gồm 5 chữ số phân biệt sao cho 1, 2, 3 luôn đứng cạnh nhau.

Trả lời

Gọi số tự nhiên có 5 chữ số là abcde.

Buộc 3 chữ số 1, 2, 3 thành 1 cụm, đặt là A

Hoán vị các chữ số 1, 2, 3 cho nhau ta được 3! = 6 khả năng xảy ra của A

Có 3 cách chọn vị trí cho A trong abcde

Sau khi chọn xong vị trí cho A, 2 chữ số còn lại có A(2/7) = 42 cách chọn

Như vậy, sẽ có 3 ∙ 6 ∙ 42 = 756 số được tạo thành tính cả trường hợp a = 0.

Xét a = 0: 

Khi đó, ta có 2 vị trí cho A, và mỗi vị trí có 6 khả năng xảy ra của A (Hoán vị 1, 2, 3)

Chữ số còn lại có 6 cách chọn

Vậy nếu a = 0 thì sẽ có 72 số được tạo thành.

Vậy số số tự nhiên có 5 chữ số (a khác 0) thỏa mãn yêu cầu bài toán: 756 − 72 = 684 số tự nhiên.

 

 

Câu hỏi cùng chủ đề

Xem tất cả