Có bao nhiêu giá trị nguyên của m để hàm số y = mx^4 + (m^2-4)x^2 + 2 có đúng một điểm cực đại và không có điểm cực tiểu?

Có bao nhiêu giá trị nguyên của m để hàm số y=mx4+m24x2+2  có đúng một điểm cực đại và không có điểm cực tiểu?

A. 3

B. 

C. 1

D. 2

Trả lời

Đáp án đúng là: A

Nếu m = 0 thì y=4x2+2 . Đây là hàm số bậc hai có hệ số a < 0 nên nó có đúng một điểm cực đại và không có điểm cực tiểu. Vậy m = 0  thỏa đề.

Nếu m0  ta có:

y'=4mx3+2m24x=2x2mx2+m24

y'=0x=0x2=4m22m

Do đó, để hàm số đã cho có đúng một điểm cực đại và không có điểm cực tiểu thì

m<04m22m0m<04m202m<0

m  nên m2;1;0 .

Kết hợp c 2 trường hợp ta có .

Vậy có 3 giá trị nguyên của m  thỏa mãn đề bài.

Câu hỏi cùng chủ đề

Xem tất cả