Chứng tỏ rằng A = 1 + 4 + 4^2 + … + 4^2021 chia hết cho 21
Đề bài. Chứng tỏ rằng A = 1 + 4 + 42 + … + 42021 chia hết cho 21.
Đề bài. Chứng tỏ rằng A = 1 + 4 + 42 + … + 42021 chia hết cho 21.
Dựa vào số mũ ta có thể thấy A có tất cả 2022 hạng tử nên chia làm 674 nhóm, mỗi nhóm 3 hạng tử.
A = 1 + 4 + 42 + … + 42021
A = (1 + 4 + 42) + (43 + 44 + 45) + … + (42019 + 42020 + 42021)
A = (1 + 4 + 42) + 43(1 + 4 + 42) + … + 42019(1 + 4 + 42)
A = (1 + 4 + 42)(1 + 43 + … + 42019)
A = 21.(1 + 43 + … + 42019) ⋮ 21
Vậy A ⋮ 21.