Chứng minh sin 3x = 3sin x – 4sin^3x, cos 3x = 4cos^3x – 3cos x

Đề bài: Chứng minh sin 3x = 3sin x – 4sin3x, cos 3x = 4cos3x – 3cos x

 

Trả lời

Hướng dẫn giải:

Ta có: sin 3x = sin (2x + x) = sin 2x . cos x + cos 2x . sin x

= (2sin x. cos x) . cos x + (1 – 2sin2x) . sin x

= 2sin x. cos2 x + sin x – 2 sin3x

= 2sin x . (1 – sin2x) + sin x – 2 sin3x

= 2sin x – 2 sin3x + sin x – 2 sin3x

3sin x – 4sin3x

Vậy sin 3x = 3sin x – 4sin3x

Ta có: cos 3x = cos (2x + x) = cos 2x . cos x – sin 2x . sin x

= (–1 + 2cos2x) . cos x – 2cos x . sin x . sin x

= – cos x + 2cos3 x – 2cos x . sin2 x

= – cos x + 2cos3 x – 2cos x . (1 – cos2 x)

= – cos x + 2cos3 x – 2cos x + 2cos3 x

4cos3x – 3cos x

Vậy cos 3x = 4cos3x – 3cos x .

Câu hỏi cùng chủ đề

Xem tất cả