Chứng minh rằng: (x^m + x^n + 1) chia hết cho x^2 + x + 1 khi và chỉ khi (mn – 2) chia hết cho 3

Câu 8: Chứng minh rằng: (xm + xn + 1) chia hết cho x2 + x + 1 khi và chỉ khi (mn – 2) chia hết cho 3.

Trả lời

Đặt m = 3k + r với 0 ≤ r ≤ 2

n = 3t + s với 0 ≤ s ≤ 2

Ta có: xm + xn + 1

= x3k+r + x3t+s + 1

= x3kxr – xr + x3txs – xs + xr + xs + 1

= xr (x3k – 1) + xs (x3t – 1) + xr + xs + 1

Ta thấy: (x3k – 1) ⋮ (x2 + x + 1) và (x3t – 1) ⋮ (x2 + x + 1)

Vậy để (xm + xn + 1) ⋮ x2 + x + 1 thì (xr + xs + 1) ⋮ (x2 + x + 1) với 0 ≤ r, s ≤ 2

 

 

Câu hỏi cùng chủ đề

Xem tất cả