Chứng minh rằng x^5 ‒ x + 2 không là số chính phương với mọi x thuộc ℤ
Câu 9: Chứng minh rằng x5 ‒ x + 2 không là số chính phương với mọi x thuộc ℤ.
Câu 9: Chứng minh rằng x5 ‒ x + 2 không là số chính phương với mọi x thuộc ℤ.
Ta có:
x5 ‒ x + 2
= x(x4 ‒ 1) +2
= x(x4 ‒ x2 + x2 ‒ 1) + 2
= x(x2 ‒ 1)(x2 + 1) + 2
= x(x2 ‒ x + x ‒ 1)(x2 + 1) + 2
= x(x ‒ 1)(x + 1)(x2 + 1) + 2
Nhận thấy x(x ‒ 1)(x + 1) là tích 3 số nguyên liên tiếp nên chia hết cho 3
⇒ x(x ‒ 1)(x + 1)(x2 + 1) + 2 chia 3 dư 2, không là số chính phương
Vậy x5 ‒ x + 2 không là số chính phương với mọi x thuộc ℤ