Chứng minh rằng với mọi số nguyên x, y thì: A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y^4 là số

Câu 2: Chứng minh rằng với mọi số nguyên x, y thì:

A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4 là số chính phương.

Trả lời

Ta có: A = (x + y)(x + 2y)(x + 3y)(x + 4y) + y4

= [(x + y)(x + 4y)][(x + 2y)(x + 3y)] + y4

= (x2 + 5xy + 4y2)(x2 + 5xy + 6y2) + y4

Gọi x2 + 5xy + 4y2 = a

A = a(a + 2y2) + y4

= a2 + 2ay2 + y4

= (a + y2)2

= (x2 +  5xy + 4y2 + y2)2

= (x2 + 5xy + 5y2)2

Suy ra A là một số chính phương.

Câu hỏi cùng chủ đề

Xem tất cả