Chứng minh rằng với mọi giá trị của m thì phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm

Câu 11: Chứng minh rằng với mọi giá trị của m thì phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.

Trả lời

Ta có mx2 – (3m + 2)x + 1 = 0   (1)

Trường hợp 1: m = 0.

Thế m = 0 vào (1), ta được: 2+1=0=12 .

Suy ra nhận m = 0.

Trường hợp 2: m ≠ 0.

∆ = (3m + 2)2 – 4m = 9m2 + 12m + 4 – 4m = 9m2 + 8m + 4.

=3+432+209209>0,  .

 

Suy ra phương trình (1) luôn có 2 nghiệm phân biệt, với mọi m.

Kết hợp cả 2 trường hợp, ta thu được phương trình đã cho luôn có nghiệm với mọi giá trị của m.

Câu hỏi cùng chủ đề

Xem tất cả