Chứng minh rằng với mọi giá trị của m thì phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm
Câu 11: Chứng minh rằng với mọi giá trị của m thì phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.
Câu 11: Chứng minh rằng với mọi giá trị của m thì phương trình mx2 – (3m + 2)x + 1 = 0 luôn có nghiệm.
Ta có mx2 – (3m + 2)x + 1 = 0 (1)
Trường hợp 1: m = 0.
Thế m = 0 vào (1), ta được: .
Suy ra nhận m = 0.
Trường hợp 2: m ≠ 0.
∆ = (3m + 2)2 – 4m = 9m2 + 12m + 4 – 4m = 9m2 + 8m + 4.
.
Suy ra phương trình (1) luôn có 2 nghiệm phân biệt, với mọi m.
Kết hợp cả 2 trường hợp, ta thu được phương trình đã cho luôn có nghiệm với mọi giá trị của m.