Chứng minh rằng A = n^4 – 14n^3 + 71n^2 – 154n + 120 chia hết cho 24
Câu 39: Chứng minh rằng A = n4 – 14n3 + 71n2 – 154n + 120 chia hết cho 24.
Câu 39: Chứng minh rằng A = n4 – 14n3 + 71n2 – 154n + 120 chia hết cho 24.
Để chứng minh A chia hết cho 24 tức là chứng minh A chia hết cho 2, 3 và 8.
Ta có:
A = n4 – 14n3 + 71n2 – 154n + 120
A = n4 – 2n3 –12n3 + 24n2 + 47n2 – 94n–60n + 120
A = n3(n – 2) –12n2 (n – 2) + 47n(n – 2) – 60(n – 2)
A= (n – 2)(n3 – 12n2 + 47n – 60)
A = (n – 2)(n3 – 3n2 – 9n2 +27n + 20n – 60)
A = (n – 2)(n – 3)[(n2 – 4n) – (5n – 20)]
A = (n – 2)(n – 3)(n – 4)(n – 5)
Ta có: n – 2 và n – 3 là hai số tự nhiên liên tiếp nên (n – 2)(n – 3) chia hết cho 2, suy ra A chia hết cho 2 (1)
n – 2; n – 3; n – 4 là ba số tự nhiên liên tiếp nên (n – 2)(n – 3)(n – 4) chia hết cho 2, suy ra A chia hết cho 3 (2)
n – 2; n – 3; n – 4; n – 5 là bốn số tự nhiên liên tiếp nên (n – 2)(n – 3)(n – 4)(n – 5)chia hết cho 4, suy ra A chia hết cho 4 (3)
Từ (1), (2) và (3) suy ra A chia hết cho 24.