Chứng minh rằng: a) (a + b + c)^2 ≤ 3(a^2 + b^2 + c^2) b) (a + b)^2 ≤ 2(a%2 + b^2)

Câu 20: Chứng minh rằng:

a) (a + b + c)2 ≤ 3(a2 + b2 + c2)

b) (a + b)2 ≤ 2(a2 + b2)

Trả lời

a) Ta có: (a + b + c)2 ≤ 3(a2 + b2 + c2)

 a2 + b2 + c2 + 2ab + 2ac + 2bc ≤ 3a+ 3b2 + 3c2

 -2a2 – 2b– 2c2 + 2ab + 2ac + 2bc ≤ 0

 -(a – b)2 – (b – c)  (c – a)2 ≤ 0 (đúng với mọi a, b, c)

Dấu “=” xảy ra khi a = b = c.

b) (a + b)2 ≤ 2(a2 + b2)

 a2 – 2ab + b2 ≤ 2a2 + 2b2

 –a2 – 2ab – b2 ≤ 0

 (a + b)2 ≤ 0 (đúng với mọi a, b)

Dấu “=” xảy ra khi a = –b

Câu hỏi cùng chủ đề

Xem tất cả