Chứng minh rẳng A = (5n – 2)^2 – (2n – 5)^2 chia hết cho 21 với mọi giá trị nguyên n

Câu 2: Chứng minh rẳng A = (5n – 2)2 – (2n – 5)2 chia hết cho 21 với mọi giá trị nguyên n.

Trả lời

A = (5n – 2)2 – (2n – 5)2

A = (5n – 2 – 2n + 5)(5n – 2 + 2n – 5)

A = (3n + 3)(7n – 7)

A = 3 . 7 . (n + 1)(n – 1)

A = 21 . (n + 1)(n – 1)

Ta thấy: 21 chia hết cho 7 nên 21 . (n + 1)(n – 1) chia hết cho 7.

Vậy A chia hết cho 7 với mọi n.

Câu hỏi cùng chủ đề

Xem tất cả