Chứng minh rằng 2x^2 − x + 1 > 0 với mọi giá trị của x.

Chứng minh rằng 2x2 − x + 1 > 0 với mọi giá trị của x.

Trả lời

Lời giải

Ta có: 2x2 − x + 1

\( = 2\left( {{x^2} - 2.\frac{1}{4}x + \frac{1}{{16}} + \frac{7}{{16}}} \right)\)

\( = 2{\left( {x - \frac{1}{4}} \right)^2} + \frac{7}{8}\)

Do \({\left( {x - \frac{1}{4}} \right)^2} \ge 0;\;\forall x\)

\( \Rightarrow 2{\left( {x - \frac{1}{4}} \right)^2} \ge 0;\;\forall x\)

\( \Rightarrow 2{\left( {x - \frac{1}{4}} \right)^2} + \frac{7}{8} \ge \frac{7}{8};\;\forall x\)

\( \Rightarrow 2{\left( {x - \frac{1}{4}} \right)^2} + \frac{7}{8} > 0;\;\forall x\)

Vậy 2x2 − x + 1 > 0 với mọi số thực x.

Câu hỏi cùng chủ đề

Xem tất cả