Chứng minh rằng 1 số chính phương có số ước là 1 số lẻ

Câu 4: Chứng minh rằng 1 số chính phương có số ước là 1 số lẻ.

Trả lời

Gọi P là một số chính phương.

Ta có: P = k2 ()

Giả sử k phân tích ra thừa số nguyên tố là k = ax.by.cz.... (a, b, c là các số nguyên tố)

 P = (ax.by.cz....)2

 P = a2x.b2y.c2z

Vì 2 chia hết cho 2 nên 2x, 2y, 2z, ... cũng chia hết cho 2

 2x, 2y, 2z, ... là số chẵn

Số lượng ước của P là (2x + 1)(2y + 1)(2z + 1)...

Vì 2x, 2y, 2z, ... là số chẵn nên 2x + 1, 2y + 1, 2z + 1, ... là số lẻ

 (2x + 1)(2y + 1)(2z + 1)... là số lẻ

 Số lượng ước của P là 1 số lẻ

Vậy số chính phương luôn có số ước là 1 số lẻ.

Câu hỏi cùng chủ đề

Xem tất cả