Chứng minh nếu p và 8p^2 + 1 là hai số nguyên tố lẻ thì 8p^2 + 2p + 1 là số nguyên tố

Câu 1: Chứng minh nếu p và 8p2 + 1 là hai số nguyên tố lẻ thì 8p2 + 2p + 1 là số nguyên tố.

Trả lời

Số tự nhiên p có một trong các dạng:

3,3+1,3+2, với 

 Nếu p = 3k mà p là số nguyên tố lẻ nên p = 3

Khi đó:

8p2 + 1 = 8 . 32 + 1 = 73 là số nguyên tố lẻ;

8p2 + 2p + 1= 8 . 32 + 2 . 3 + 1 = 79 là số nguyên tố.

 Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 72k2 + 48k + 9  3 là hợp số nên loại.

 Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 72k2 + 96k + 33  3 là hợp số nên loại.

Vậy minh nếu p và 8p2 + 1 là hai số nguyên tố lẻ thì 8p2 + 2p + 1 là số nguyên tố.

 

Câu hỏi cùng chủ đề

Xem tất cả