Chứng minh nếu n^2 chia hết cho 9 thì n chia hết cho 3 (với n là số tự nhiên
Câu 15: Chứng minh nếu n2 chia hết cho 9 thì n chia hết cho 3 (với n là số tự nhiên).
Câu 15: Chứng minh nếu n2 chia hết cho 9 thì n chia hết cho 3 (với n là số tự nhiên).
Vì n2 chia hết cho 9, ta giả sử n2 = 9k (k ∈ ℕ)
Khi đó 9k là số chính phương.
Mà 9 = 32 nên k là số chính phương, do đó tồn tại số m sao cho k = m2 (m ∈ ℕ)
Từ n2 = 9k ta có nên n chia hết cho 3.