Chứng minh: A hợp (B giao C) = (A hợp B) giao (A hợp C)

 Chứng minh: A (B ∩ C) = (A B) ∩ (A C).

Trả lời

Để chứng minh điều này ta đi chứng minh 2 điều sau:

A (B ∩ C) (A B) ∩ (A C) (1)

Và (A B) ∩ (A C) A (B ∩ C) (2)

- Chứng minh điều 1:

Giả sử x A x cũng thuộc B và C vì A (B ∩ C) (*)

x (A B), x (A C) x (A B) ∩ (A C). Từ (*) và điều này ta A (B ∩ C) (A B) ∩ (A ∩ C). (1)

- Chứng minh điều 2: Giả sử x (A B) x (A C) vì đề cho (A B) ∩ (A C).

Từ điều trên x A, B và C x A (B ∩ C)

Từ điều x (A B) ∩ (A C) mà x A (B ∩ C) (A B) ∩ (A C) A (B ∩ C) (2)

Từ điều 1 và 2 đã được chứng minh như trên ta suy ra được đpcm.

Câu hỏi cùng chủ đề

Xem tất cả