Chứng minh: a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C); b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
Chứng minh:
a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);
b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
Chứng minh:
a) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);
b) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C).
Lời giải
a) Chiều thuận:
Xét x ∈ A ∩ (B ∪ C).
⇒ x ∈ A và x ∈ (B ∪ C).
\[ \Rightarrow \left\{ \begin{array}{l}x \in A\\\left[ \begin{array}{l}x \in B\\x \in C\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \in A\\x \in B\end{array} \right.\\\left\{ \begin{array}{l}x \in A\\x \in C\end{array} \right.\end{array} \right. \Rightarrow x \in \left( {A \cap B} \right) \cup \left( {A \cap C} \right)\] (1)
Chiều đảo:
Xét x ∈ (A ∩ B) ∪ (A ∩ C).
⇒ x ∈ (A ∩ B) hoặc x ∈ (A ∩ C).
\( \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x \in A\\x \in B\end{array} \right.\\\left\{ \begin{array}{l}x \in A\\x \in C\end{array} \right.\end{array} \right. \Rightarrow \left\{ \begin{array}{l}x \in A\\\left[ \begin{array}{l}x \in B\\x \in C\end{array} \right.\end{array} \right. \Rightarrow x \in A \cap \left( {B \cup C} \right)\) (2)
Từ (1), (2), suy ra điều phải chứng minh.
b) Chiều thuận:
Xét x ∈ A ∪ (B ∩ C).
⇒ x ∈ A hoặc x ∈ (B ∩ C).
\( \Rightarrow \left[ \begin{array}{l}x \in A\\\left\{ \begin{array}{l}x \in B\\x \in C\end{array} \right.\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \in A\\x \in B\end{array} \right.\\\left[ \begin{array}{l}x \in A\\x \in C\end{array} \right.\end{array} \right. \Rightarrow x \in \left( {A \cup B} \right) \cap \left( {A \cup C} \right)\) (3)
Chiều đảo:
Xét x ∈ (A ∪ B) ∩ (A ∪ C).
⇒ x ∈ (A ∪ B) và x ∈ (A ∪ C).
\( \Rightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x \in A\\x \in B\end{array} \right.\\\left[ \begin{array}{l}x \in A\\x \in C\end{array} \right.\end{array} \right. \Rightarrow \left[ \begin{array}{l}x \in A\\\left\{ \begin{array}{l}x \in B\\x \in C\end{array} \right.\end{array} \right. \Rightarrow x \in A \cup \left( {B \cap C} \right)\) (4)
Từ (3), (4), suy ra điều phải chứng minh.