Chứng  minh 1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1) = n^2 (n+1) với mọi n thuộc N*.

Chứng  minh 1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1) = n2 (n+1) với mọi n thuộc N*.

Trả lời

Lời giải

1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1) = n2 (n + 1)                (*)

+) Với n = 1

Vế trái của (*) = 2, vế phải của (*) = 12 (1 + 1 ) = 2

Suy ra (*) đúng với n = 1

Giả sử (*) đúng với n = k (k N*) , ta có:

1 . 2 + 2 . 5 + ... + k(3k – 1) = k2(k + 1)                   (1)

Ta chứng minh (*) đúng với n = k + 1, thật vậy:

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) – 1] = k2 (k + 1) + (k + 1)[3(k + 1) – 1]

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)(k2 + 3k +2)

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)(k2 + k + 2k + 2)

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)[k(k + 1) + 2(k +1)]

1 . 2 + 2 . 5 + ... + k(3k – 1) + (k + 1)[3(k + 1) –1] = (k + 1)2(k + 2)

Suy ra (*) đúng với n = k + 1 , theo nguyên lý qui nạp (*) đúng với mọi n thuộc N*

Vậy 1 . 2 + 2 . 5 + 3 . 8 + .... + n(3n – 1) = n2 (n+1) với mọi n thuộc N* .

Câu hỏi cùng chủ đề

Xem tất cả