Cho x, y, z là 3 số thực thay đổi thỏa mãn điều kiện x + y + z = 3. Tìm giá

Cho x, y, z là 3 số thực thay đổi thỏa mãn điều kiện x + y + z = 3. Tìm giá trị nhỏ nhất của biểu thức \(P = \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt y }} + \frac{1}{{\sqrt z }}.\)

Trả lời

Áp dụng BDT Cô – si, ta có:

\(P = \frac{1}{{\sqrt x }} + \frac{1}{{\sqrt y }} + \frac{1}{{\sqrt z }} \ge 3\sqrt[3]{{\frac{1}{{\sqrt {xyz} }}}}\)

\(\sqrt[3]{{xyz}} \le \frac{{x + y + z}}{3} = 1\)

P ≥ 3.

Vậy giá trị nhỏ nhất của P = 3 x = y = z = 1.

Câu hỏi cùng chủ đề

Xem tất cả