Cho x, y, x thỏa mãn điều kiện x + y + x + xy + yz + zx = 6 . Tìm giá trị nhỏ

Cho x, y, x thỏa mãn điều kiện x + y + x + xy + yz + zx = 6 . Tìm giá trị nhỏ nhất của P = x2 + y2 + z2.

Trả lời

Ta có (x – 1)2 ≥ 0

x2 + 1 ≥ 2x

(y – 1)2 ≥ 0

y2 + 1 ≥ 2y

(z – 1)2 ≥ 0

z2 + 1 ≥ 2z

(x – y – z)2 ≥ 0

2(x2 + y2 + z2 ) ≥ 2(xy + yz + zx)

Suy ra 3(x2 + y2 + z2) + 3 ≥ 2(x + y + z + xy + yz + xz)

Hay 3P + 3 ≥ 2 . 6

P ≥ 3

Dấu “ = ” xảy ra khi x = y = z =1

Vậy P đạt giá trị nhỏ nhất bằng 3 khi x = y = z =1.

Câu hỏi cùng chủ đề

Xem tất cả