Cho x, y là các số dương thỏa mãn 4xy = x + y + 2. Tìm giá trị nhỏ nhất của biểu thức x + y + 1/x + y

Cho x, y là các số dương thỏa mãn 4xy = x + y + 2. Tìm giá trị nhỏ nhất của biểu thức \(x + y + \frac{1}{{x + y}}\).

Trả lời

Lời giải

Áp dụng bất đẳng thức Cauchy, ta có (x + y)2 ≥ 4xy.

(x + y)2 ≥ x + y + 2

(x + y)2 – (x + y) – 2 ≥ 0

(x + y – 2)(x + y + 1) ≥ 0

\( \Leftrightarrow x + \)y – 2 ≥ 0 (do x + y + 1 > 0, với mọi số dương x, y)

x + y ≥ 2.

Áp dụng bất đẳng thức Cauchy, ta có \(\frac{{x + y}}{4} + \frac{1}{{x + y}} \ge 2\sqrt {\frac{{x + y}}{4}.\frac{1}{{x + y}}} = 2.\sqrt {\frac{1}{4}} = 1\).

Ta có \(x + y + \frac{1}{{x + y}} = \frac{{3\left( {x + y} \right)}}{4} + \frac{{x + y}}{4} + \frac{1}{{x + y}} \ge \frac{{3.2}}{4} + 1 = \frac{5}{2}\).

Dấu “=” xảy ra x = y = 1.

Vậy giá trị nhỏ nhất của biểu thức \(x + y + \frac{1}{{x + y}}\) bằng \(\frac{5}{2}\) khi x = y = 1.

Câu hỏi cùng chủ đề

Xem tất cả