Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA
660
04/12/2023
Bài 3 trang 65 Toán 8 Tập 2: Cho tứ giác ABCD có M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA.
a) Chứng minh tứ giác MNPQ là hình bình hành.
b) Cho AC = BD. Chứng minh tứ giác MNPQ là hình thoi.
c) Cho AC ⊥ BD. Chứng minh tứ giác MNPQ là hình chữ nhật.
Trả lời
a) Xét ∆ABC có M, N lần lượt là trung điểm AB, BC nên MN là đường trung bình của ∆ABC
Suy ra MN//AC và (1)
Xét ∆ADC có P, Q lần lượt là trung điểm DC, AD nên PQ là đường trung bình của ∆ADC
Suy ra PQ//AC và (2)
Từ (1) và (2) suy ra MN // PQ; MN = PQ.
Tứ giác MNPQ có MN // PQ; MN = PQ nên MNPQ là hình bình hành.
b) Xét tam giác ABD có M, Q lần lượt là trung điểm AB, AD nên MQ là đường trung bình của ∆ABD
Suy raMQ // BD và
Mà và AC = BD nên MN = MQ.
Hình bình hành MNPQ có MN = MQ nên MNPQ là hình thoi.
c) Ta có MN // AC (câu a), MQ // BD (câu b) và AC ⊥ BD (giả thiết)
Suy ra MN ⊥ MQ hay
Hình bình hành MNPQ có nên là hình chữ nhật.
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:
Bài 1: Định lí Thalès trong tam giác
Bài 2: Ứng dụng của định lí Thalès trong tam giác
Bài 3: Đường trung bình của tam giác
Bài 4: Tính chất đường phân giác của tam giác
Bài 5: Tam giác đồng dạng
Bài 6: Trường hợp đồng dạng thứ nhất của tam giác