Cho tứ giác ABCD có góc D + góc C = 90 độ . Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA

Đề bài. Cho tứ giác ABCD có D^+C^=90. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA. Chứng minh rằng bốn điểm M, N, P, Q cùng nằm trên một đường tròn.

Trả lời

Giả sử AD cắt BC tại E

Khi đó từ giả thiết: D^+C^=90 ta có: E^=180 -(C^+D^)=90

Ta lần lượt có: MN // AD // PQ; MQ // BC // PN

Do đó dựa trên tính chất của góc có cạnh tương ứng song song ta được:

MNQ^=NPQ^=E^=90

Do đó bốn điểm M, N, P, Q cùng nằm trên một đường tròn đường kính NQ.

Câu hỏi cùng chủ đề

Xem tất cả