Cho tứ giác ABCD có AC cắt BD tại O, góc ABD = góc ACD

Đề bài: Cho tứ giác ABCD có AC cắt BD tại O, ABD^ = ACD^. Gọi E là giao điểm của AD và BC CMR :

a) Các tam giác AOB và DOC đồng dạng.

b) Các tam giác AOD và BOC đồng dạng.

c) EA . ED = EB . EC.

Trả lời

Hướng dẫn giải:

a) Xét ΔAOB và ΔDOC có:

AOB^= COD^

ABD^=ACD^

do đó : ΔAOB đồng dạng với ΔDOC  (g-g)

b) theo cm câu a: ΔAOB đồng dạng với ΔDOC

AOOD = OBOC

Xét ΔAOD và ΔBOC có:

OAOD = OBOC

AOD^ = BOC^ (2 góc đối đỉnh)

Do đó: ΔAOD  đồng dạng với ΔBOC  (c-g-c)

c) Xét ΔDBE và ΔCAE có:

DEC^ chung

EDB^ = ACE^ ( 2 góc tương ứng của ΔAOD đồng dạng với ΔBOC )

Do đó: ΔDBE đồng dạng với ΔCAE (g - g)

EBEA = EDECEA . ED = EB . EC

Câu hỏi cùng chủ đề

Xem tất cả