Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh
Bài 3 trang 85 Toán 8 Tập 2: Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh:
a) ∆ACD ᔕ ∆BCE và CA.CE = CB.CD.
b) ∆ACD ᔕ ∆AHE và AC.AE = AD.AH.
Bài 3 trang 85 Toán 8 Tập 2: Cho tam giác nhọn ABC, hai đường cao AD và BE cắt nhau tại H. Chứng minh:
a) ∆ACD ᔕ ∆BCE và CA.CE = CB.CD.
b) ∆ACD ᔕ ∆AHE và AC.AE = AD.AH.
a) Do tam giác ABC có hai đường cao AD và BE nên AD ⊥ BC, BE ⊥ AC.
Suy ra
Xét ∆ACD và ∆BCE có:
là góc chung
Suy ra ∆ACD ᔕ ∆BCE (g.g).
Do đó (tỉ số đồng dạng)
Vì vậy, CA.CE = CB.CD.
b) Xét ∆ACD và ∆AHE có:
là góc chung;
Suy ra∆ACD ᔕ ∆AHE (g.g).
Do đó (tỉ số đồng dạng)
Vì vậy, AC.AE = AH.AD.
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác: