Cho tam giác MNP có MN = 10, MP = 20 và góc M = 42°. a) Tính diện tích tam giác MNP
89
05/01/2024
Bài 7 trang 75 SBT Toán 10 Tập 1: Cho tam giác MNP có MN = 10, MP = 20 và = 42°.
a) Tính diện tích tam giác MNP.
b) Gọi O là tâm đường tròn ngoại tiếp tam giác MNP. Tính diện tích tam giác ONP.
Trả lời
a) Diện tích tam giác MNP là:
S = .MN.MP.sin= .10.20.sin42° ≈ 67 (đvdt).
Vậy diện tích tam giác MNP là 67 đvdt.
b)
Áp dụng định lí côsin:
NP2 = MP2 + MN2 – 2.MN.MP.cos
NP2 = 102 + 202 – 2.10.20.cos42°
NP =
NP ≈ 14,24.
Áp dụng định lí sin trong tam giác MNP, ta có: R = ON = OP = ≈ ≈ 10,64
Xét đường tròn tâm O ngoại tiếp tam giác MNP:
là góc nội tiếp chắn cung NP ⇒ = ⇒ = 42°.2 = 84°.
Suy ra SONP = .ON.OP.sin ≈ .(10,64)2.sin84° ≈ 56,30 (đvdt)
Vậy diện tích tam giác ONP là 56,30 đvdt.
Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài tập cuối chương 3
Bài 1: Giá trị lượng giác của góc từ 0° đến 180°
Bài 2: Định lí côsin và định lí sin
Bài tập cuối chương 4
Bài 1: Khái niệm vectơ
Bài 2: Tổng và hiệu của hai vectơ