Cho tam giác ABC với BC = a; AC = b; AB = c. Chứng minh rằng:1 + cosA =((a+b+c).(-a+b+c))/2bc

Bài 5 trang 75 SBT Toán 10 Tập 1: Cho tam giác ABC với BC = a; AC = b; AB = c. Chứng minh rằng:1 + cosA = (a+b+c)(a+b+c)2bc.

 

Trả lời

Theo định lí côsin ta có: a2 = b2 + c2 – 2bccosA

⇒ cosA = b2+c2a22bc

Ta có:

1 + cosA = 1 + b2+c2a22bc 

2bc+b2+c2a22bc 

(b+c)2a22bc 

(a+b+c)(a+b+c)2bc

Vậy ta có điều phải chứng minh.

Xem thêm các bài giải SBT Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:

Bài tập cuối chương 3

Bài 1: Giá trị lượng giác của  góc từ 0° đến 180°

Bài 2: Định lí côsin và định lí sin

Bài tập cuối chương 4

Bài 1: Khái niệm vectơ

Bài 2: Tổng và hiệu của hai vectơ

Câu hỏi cùng chủ đề

Xem tất cả