Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC ở D. Trên cạnh BC lấy điểm E sao cho BE = BA.
32
01/06/2024
Cho tam giác ABC vuông tại A, tia phân giác của góc B cắt AC ở D. Trên cạnh BC lấy điểm E sao cho BE = BA. Đường thẳng qua C vuông góc với BD cắt Ab ở F. Chứng minh rằng D, E, F thẳng hàng.
Trả lời
Xét ΔABD và ΔEBD có:
AB = BE (gt);
(BD là tia phân giác )
BD cạnh chung
⇒∆ABD = ∆EBD (c.g.c)
Mà (gt)
Suy ra: DE vuông BC
Mặc khác ∆FBC có CA, BD là đường cao cắt nhau tại D.
⇒ D là trực tâm của ∆FBC có DF ⊥ BC.
Ta có DE ⊥ BC; DF ⊥ BC.
Do đó hai đường thẳng DE, DF trùng nhau.
Vậy ba điểm D, E, F thẳng hàng.