Cho tam giác ABC vuông tại A có AC = 6 cm , góc ACB = 30^0. Vẽ đường tròn (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H a) Tính BC  b) Chứng minh tam giác CDE đều c) Qua B

Cho tam giác ABC vuông tại A có AC = 6 cm , \(\widehat {ACB} = 30^\circ \) . Vẽ đường tròn (O) đường kính AC cắt BC tại D, dây DE vuông góc với AC tại H

a) Tính BC 

b) Chứng minh tam giác CDE đều

c) Qua B vẽ đường thẳng tiếp xúc với (O) tại M. Chứng minh tam giác BDM đồng dạng với tam giác BMC

d) Gọi K là hình chiếu vuông góc của H trên EC và I là trung điểm của HK. Chứng minh DK vuông CI

Trả lời

Lời giải

Media VietJack

a) Xét tam giác ABC vuông tại A có \(\sin \widehat {ACB} = \frac{{AC}}{{BC}}\)

Suy ra \(\sin 30^\circ = \frac{6}{{BC}}\)

Suy ra BC = 6 . 2 = 12 (cm)

b) Xét đường tròn đường kính AC có DE AC

Suy ra AC đi qua trung điểm của DE, H là trung điểm của DE

Xét tam giác ECD có CH vừa là đường cao vừa là đường trung tuyến

Suy ra tam giác ECD cân tại C và CH là tia phân giác của \(\widehat {EC{\rm{D}}}\)

Do đó \(\widehat {EC{\rm{D}}} = 2\widehat {ACB} = 2.30 = 60^\circ \)

Suy ra tam giác ECD đều

Vậy tam giác ECD đều

c) Xét đường tròn đường kính AC có \(\widehat {{\rm{BMD}}},\widehat {{\rm{MCD}}}\) là hai góc chắn cung MD

Suy ra \(\widehat {{\rm{BMD}}} = \widehat {{\rm{MCD}}}\)

Xét tam giác MDB và tam giác CMB có

\(\widehat {{\rm{BMD}}} = \widehat {{\rm{MCD}}}\) (chứng minh trên)

\(\widehat {{\rm{MBC}}}\) là góc chung

Suy ra  tam giác BDM đồng dạng với tam giác BMC

Vậy tam giác BDM đồng dạng với tam giác BMC

d) Vì tam giác EHK vuông tại K

Nên \(\widehat {KEH} + \widehat {KHE} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

Mà \(\widehat {KHC} + \widehat {KHE} = \widehat {CHE} = 90^\circ \)

Suy ra \(\widehat {KEH} = \widehat {KHC}\)

Xét tam giác KEH và tam giác KHC có

\(\widehat {KEH} = \widehat {KHC}\) (chứng minh trên)

\(\widehat {EKH} = \widehat {HKC}\left( { = 90^\circ } \right)\)

Do đó  (g.g)

Suy ra \(\frac{{KH}}{{HC}} = \frac{{EK}}{{EH}}\)

Suy ra \(\frac{{KH}}{{2HC}} = \frac{{EK}}{{2EH}}\)

Do đó \(\frac{{IH}}{{HC}} = \frac{{EK}}{{DE}}\)

Xét tam giác IHC và tam giác KED có

\(\frac{{IH}}{{HC}} = \frac{{EK}}{{DE}}\) (chứng minh trên)

\(\widehat {KED} = \widehat {IHC}\)(chứng minh trên)

Do đó  (c.g.c)

Suy ra \(\widehat {KDE} = \widehat {ICH}\) (hai góc tương ứng)

Vì tam giác CHD vuông tại H

Nên \(\widehat {HC{\rm{D}}} + \widehat {HDC} = 90^\circ \) (trong tam giác vuông, tổng hai góc nhọn bằng 90°)

\( \Leftrightarrow \widehat {HC{\rm{D}}} + \widehat {HDK} + \widehat {KDC} = 90^\circ \)

\( \Leftrightarrow \widehat {HC{\rm{D}}} + \widehat {ICH} + \widehat {KDC} = 90^\circ \)

\( \Leftrightarrow \widehat {IC{\rm{D}}} + \widehat {KDC} = 90^\circ \)

Gọi giao điểm của CI và KD là O

Xét tam giác OCD có \(\widehat {OC{\rm{D}}} + \widehat {ODC} + \widehat {DOC} = 180^\circ \)

Hay \(\widehat {DOC} = 180^\circ - 90^\circ = 90^\circ \)

Suy ra CI DK

Vậy CI DK.

Câu hỏi cùng chủ đề

Xem tất cả