Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE

Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Các đường thẳng vuông góc kẻ từ A và E với CD cắt BC ở G và H. Đường thẳng EH và đường thẳng AB cắt nhau ở M. Đường thẳng kẻ từ A song song với BC cắt MH ở I. Chứng minh:

a) ∆ACD = ∆AME.

Trả lời

a) Ta có:

Cho tam giác ABC vuông cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE (ảnh 1)

E1^=E2^ (hai góc đối đỉnh)

E2^=D1^ (Do cùng phụ với ACD^ )

E1^=D1^.

Xét ∆ACD và ∆AME có:

AD = AE (gt)

DAC^=EAM^=90°

E1^=D1^ (cmt)

Þ ∆ACD = ∆AME (c.g.c).

Câu hỏi cùng chủ đề

Xem tất cả