a) Do tam giác ABC vuông cân nên
Xét tam giác vuông ABE và tam giác vuông ACD có:
AB = AC (gt)
(Cạnh góc vuông - góc nhọn kề)
BE = CD; AE = AD
b) I là giao điểm của hai tia phân giác góc B và góc C của nên AI cũng là phân giác góc A.
Do cân tại A nên AI là phân giác đồng thời là đường cao và trung tuyến.
Vậy thì
Từ đó suy ra vuông cân tại M.
c) Gọi giao điểm của DH, AK với BE lần lượt là J và G.
Do DH và AK cùng vuông góc với BE nên ta có
Mà AD = AE nên HK = AE. (1)
Do cân tại B, có
Suy ra AG là phân giác góc IAE.
Từ đó ta có
Lại có có AG là phân giác đồng thời đường cao nên nó là tam giác cân, hay AI = AE. Suy ra KC = AE (2)
Từ (1) và (2) suy ra HK = KC.