Cho tam giác ABC và Cx là tia đối của tia CB (H.4.5). Chứng minh rằng góc ACx=góc BAC+góc CBA

Vận dụng trang 62 Toán 7 Tập 1: Cho tam giác ABC và Cx là tia đối của tia CB (H.4.5).

Chứng minh rằng ACx^=BAC^+CBA^.

Tài liệu VietJack

Trả lời

GT

Tam giác ABC, Cx là tia đối của tia CB.

KL

ACx^=BAC^+CBA^.

Tài liệu VietJack

Chứng minh (Hình vẽ trên):

Theo giả thiết Cx là tia đối của tia CB nên hai góc ACB và Acx là hai góc kề bù, hay ACB^+ACx^=180° (tính chất hai góc kề bù).

Suy ra ACx^=180°ACB^ (1).

Trong tam giác ABC ta có BAC^+ACB^+CBA^=180° (Định lí tổng ba góc trong một tam giác).

Suy ra BAC^+CBA^=180°ACB^ (2).

Từ (1) và (2) ta có ACx^=BAC^+CBA^=180°ACB^.

Vậy ACx^=BAC^+CBA^.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Luyện tập chung trang 58

Bài tập cuối chương 3 trang 59

Bài 12: Tổng các góc trong một tam giác

Bài 13: Hai tam giác bằng nhau. Trường hợp bằng nhau thứ nhất của tam giác

Luyện tập chung trang 68

Bài 14: Trường hợp bằng nhau thứ hai và thứ ba của tam giác

Câu hỏi cùng chủ đề

Xem tất cả