Cho tam giác ABC. Gọi I là trung điểm của BC; D và E là hai điểm sao cho

Cho tam giác ABC. Gọi I là trung điểm của BC; D và E là hai điểm sao cho \(\overrightarrow {B{\rm{D}}} = \overrightarrow {DE} = \overrightarrow {EC} \)

a) Chứng minh: \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} \)

b) Tính véctơ: \(\overrightarrow {AS} = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} + \overrightarrow {A{\rm{E}}} \) theo \(\overrightarrow {AI} \)

c) Suy ra ba điểm A, I, S thẳng hàng.

Trả lời

a) Ta có: \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {DB} + \overrightarrow {A{\rm{E}}} + \overrightarrow {EC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} - \overrightarrow {B{\rm{D}}} + \overrightarrow {EC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} \)

(Vì \(\overrightarrow {B{\rm{D}}} = \overrightarrow {EC} \))

b) Ta có: \(\overrightarrow {AS} = \overrightarrow {AB} + \overrightarrow {A{\rm{D}}} + \overrightarrow {AC} + \overrightarrow {A{\rm{E}}} = 2(\overrightarrow {AB} + \overrightarrow {AC} )\)

(vì \(\overrightarrow {AB} + \overrightarrow {AC} = \overrightarrow {A{\rm{D}}} + \overrightarrow {A{\rm{E}}} \))

Do I là trung điểm của BC nên \(\overrightarrow {AB} + \overrightarrow {AC} = 2\overrightarrow {AI} \)

Suy ra \(\overrightarrow {AS} = 2(\overrightarrow {AB} + \overrightarrow {AC} ) = 4\overrightarrow {AI} \)

c) Theo câu b ta có \(\overrightarrow {AS} = 4\overrightarrow {AI} \)

suy ra A, I, S thẳng hàng

Vậy A, I, S thẳng hàng.

Câu hỏi cùng chủ đề

Xem tất cả