Cho tam giác ABC điểm M nằm trong tam giác. Gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB

Câu 44: Cho tam giác ABC điểm M nằm trong tam giác. Gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB. Gọi A’, B’, C’ thứ tự là điểm đối xứng của M qua D, E, F

a) Chứng minh tứ giác AB’A’B là hình bình hành.

b) Gọi O là giao điểm của AA’ và BB’, chứng minh C và C’ đối xứng nhau qua điểm O.

Trả lời

Tài liệu VietJack

a) Xét tứ giác AB’CM có

AC cắt MB' tại trung điểm E của mỗi đường và AC, MB’ là hai đường chéo

Suy ra AB'CM là hình bình hành

Do đó AB' // MC, AB' = MC

Xét tứ giác BMCA’ có

BC cắt MA' tại trung điểm D của mỗi đường và BC, MA’ là hai đường chéo

Suy ra BMCA' là hình bình hành

Do đó MC // A'B, MC = A'B.

Ta có AB' // MC, MC // A'B (chứng minh trên), suy ra AB’ // A’B.

Ta có MC = A'B, AB' = MC (chứng minh trên), suy ra AB’ = A’B.

Xét tứ giác AB’A’B có AB’ // A’B và AB’ = A’B

Suy ra tứ giác AB'A'B là hình bình hành.

b) Xét hình bình hành AB'A'B có AA’ và BB’ cắt nhau tại O

Suy ra O là trung điểm của AA’.

Chứng minh tương tự câu a ta cóAC’ = A’C (= BM) và AC’ // A’C (// BM)

Suy ra AC’A’C là hình bình hành.

Mà O là trung điểm của AA’

Suy ra O là trung điểm của CC’.

Hay C và C’ đối xứng nhau qua điểm O

Vậy C và C’ đối xứng nhau qua điểm O.

Câu hỏi cùng chủ đề

Xem tất cả