Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G
711
08/11/2023
Bài 2 trang 108 Toán 8 Tập 1: Cho tam giác ABC có hai đường trung tuyến BM và CN cắt nhau tại G. Gọi P và Q lần lượt là trung điểm của GB và GC. Chứng minh tứ giác PQMN là hình bình hành.
Trả lời
• Xét ΔABC có hai đường trung tuyến BM và CN cắt nhau tại G (giả thiết) nên G là trọng tâm của ΔABC.
Suy ra ; (tính chất trọng tâm của tam giác) (1)
Mà P là trung điểm của GB (giả thiết) nên (2)
Q là trung điểm của GC (giả thiết) nên (3)
Từ (1), (2) và (3) suy ra GM = GP và GN = GQ.
• Xét tứ giác PQMN có: GM = GP và GN = GQ (chứng minh trên)
Do đó tứ giác PQMN có hai đường chéo MP và NQ cắt nhau tại trung điểm G của mỗi đường nên là hình bình hành.
Xem thêm các bài giải SGK Toán lớp 8 Cánh Diều hay, chi tiết khác:
Bài 2: Tứ giác
Bài 3: Hình thang cân
Bài 4: Hình bình hành