Cho tam giác ABC có góc A= 65 độ, góc B= 54 độ. Vẽ trực tâm H của tam giác ABC. Tính góc AHB.

Bài 4 trang 63 SBT Toán 7 Tập 2: Cho tam giác ABC có A^=65°,B^=54°. Vẽ trực tâm H của tam giác ABC. Tính góc AHB.

Trả lời

Sách bài tập Toán 7 Bài 8 (Kết nối tri thức): Tính chất ba đường cao của tam giác (ảnh 1)

Trong tam giác vuông ABE ta có: EAB^+EBA^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Mà EBA^=54° nên EAB^=90°EBA^=90°54°=36°.

Trong tam giác vuông BAF ta có: FAB^+FBA^=90° (trong một tam giác vuông, tổng hai góc nhọn bằng 90°).

Mà FAB^=65° nên FBA^=90°FAB^=90°65°=25°.

Trong AHB ta có: HAB^+HBA^+AHB^=180° (tổng ba góc trong một tam giác).

Suy ra AHB^=180°HAB^HBA^=180°36°25°=119°.

Vậy AHB^=119°.

Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 6: Tính chất ba đường trung trực của tam giác

Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 8: Tính chất ba đường cao của tam giác

Bài 9: Tính chất ba đường phân giác của tam giác

Bài tập cuối chương 8

Bài 1: Làm quen với yếu tố ngẫu