Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Vẽ hai đường cao AE và AF của hai tam giác ABC và ACD

Bài 3 trang 63 SBT Toán 7 Tập 2: Cho tam giác ABC cân tại A. Vẽ điểm D sao cho A là trung điểm của BD. Vẽ hai đường cao AE và AF của hai tam giác ABC và ACD. Chứng minh góc EAF vuông.

Trả lời

Sách bài tập Toán 7 Bài 8 (Kết nối tri thức): Tính chất ba đường cao của tam giác (ảnh 1)

Vì tam giác ABC cân tại A nên AB = AC.

Mà AB = AD (vì A là trung điểm của BD).

Suy ra AC = AD = AB.

Xét ΔAEB và ΔAEC có:

AEB^=AEC^=90°,

Cạnh AE là cạnh chung,

AB = AC (chứng minh trên).

Do đó ΔAEB = ΔAEC (cạnh huyền – cạnh góc vuông).

Suy ra BAE^=CAE^ (hai góc tương ứng).

Xét ΔACF và ΔADF có:

AFC^=AFD^=90°,

Cạnh AF là cạnh chung,

AC = AD (chứng minh trên).

Do đó ΔAFC = ΔAFD (cạnh huyền – cạnh góc vuông).

Suy ra FAC^=FAD^ (hai góc tương ứng).

Ta có BAE^+CAE^+FAC^+FAD^=180°

Mà BAE^=CAE^FAC^=FAD^(chứng minh trên).

Suy ra 2EAC^+2FAC^=180°

Hay 2EAC^+FAC^=180°:2=90°

Do đó EAF^=90°.

Vậy góc EAF vuông.

Xem thêm lời giải sách bài tập Toán lớp 7 Chân trời sáng tạo hay, chi tiết khác:

Bài 6: Tính chất ba đường trung trực của tam giác

Bài 7: Tính chất ba đường trung tuyến của tam giác

Bài 8: Tính chất ba đường cao của tam giác

Bài 9: Tính chất ba đường phân giác của tam giác

Bài tập cuối chương 8

Bài 1: Làm quen với yếu tố ngẫu