Cho tam giác ABC có các đường phân giác cắt nhau tại N cho ha, hb, hc là đường cao gọi r là khoảng cách từ N đến cạnh tam giác. Chứng minh rằng: 1/ha + 1/hb + 1/hc = 1/r

Cho tam giác ABC có các đường phân giác cắt nhau tại N cho ha, hb, hc là đường cao gọi r là khoảng cách từ N đến cạnh tam giác. Chứng minh rằng:

\[\frac{1}{{{h_a}}} + \frac{1}{{{h_b}}} + \frac{1}{{{h_c}}} = \frac{1}{r}\]

Trả lời

Lời giải

Ta có \({S_{ABC}} = \frac{1}{2}{h_a}.a = \frac{1}{2}{h_b}.b = \frac{1}{2}{h_c}.c\).

Do đó \(\frac{a}{{2{S_{ABC}}}} + \frac{b}{{2{S_{ABC}}}} + \frac{c}{{2{S_{ABC}}}} = \frac{{a + b + c}}{2}.\frac{1}{{{S_{ABC}}}}\)\( = p.\frac{1}{{p.r}} = \frac{1}{r}\).

Câu hỏi cùng chủ đề

Xem tất cả