Cho tam giác ABC có AB = AC và tia phân giác góc A cắt BC ở H. a) Chứng minh tam giác ABH= tam giác ACH

Cho tam giác ABC có AB = AC và tia phân giác góc A cắt BC ở H.

a) Chứng minh ΔABH = ΔACH

b) Chứng minh AH  BC

c) Vẽ HD AB (D AB) và HEAC (EAC). Chứng minh: DE // BC

Trả lời
Cho tam giác ABC có AB = AC và tia phân giác góc A cắt BC ở H.  a) Chứng minh tam giác ABH= tam giác ACH (ảnh 1)

a) Xét ΔABH và ΔBCH  có:

AH cạnh chung

BAH^=CAH^ (AH là tia phân giác của góc BAC)

AB = AC (gt)

Suy ra: ΔABH = ΔACHc  g  c

b) Ta có AHB^=AHC^ ΔABH=ΔACH)

Mà: AHB^+AHC^=1800 (kề bù)

Suy ra: AHB^=AHC^=900 hay AHBC (1)

c) Gọi I là giao điểm của AH và DE

Xét hai tam giác vuông: ΔADH và ΔAEH có:

AH cạnh chung

BAH^=CAH^ (AH là tia phân giác của góc BAC)

Suy ra: ΔADH = ΔAEH (ch – gn)

Xét ΔADI và ΔAI có:

AI: cạnh chung

BAH^=CAH^ (AH là tia phân giác của góc BAC)

AD = AE ΔADH = ΔAEH

Suy ra: ΔADI = ΔAEI (c – g – c)

Suy ra AID^ = AIE^ (2 góc tương ứng)

AID^ = AIE^=1800 (kề bù)

Suy ra AID^ = AIE^=900 hay AHDE (2)

Từ (1) và (2) suy ra DE // BC

Câu hỏi cùng chủ đề

Xem tất cả