Cho tam giác ABC có AB = a, AC = 2a. Gọi D là trung điểm AC, M là điểm thỏa mãn vecto BM = 1/3 veto BC. Chứng minh: BD vuông góc AM.
30
16/05/2024
Cho tam giác ABC có AB = a, AC = 2a. Gọi D là trung điểm AC, M là điểm thỏa mãn \(\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \). Chứng minh: BD vuông góc AM.
Trả lời
Lời giải
Ta có: \(\overrightarrow {BM} = \frac{1}{3}\overrightarrow {BC} \)
\( \Rightarrow BM = \frac{1}{3}BC\) và \(M \in BC\).
Lấy E là trung điểm MC.
\( \Rightarrow EM = EC = \frac{1}{2}MC = \frac{1}{2}.\frac{2}{3}BC = \frac{1}{3}BC\) nên BM = ME = EC.
Þ M là trung điểm BE.
Ta có D, E là trung điểm AC, CM
Þ DE là đường trung bình ΔAMC
Þ DE // AM.
Gọi AM ∩ BD = F.
Þ DE // MF
Mà M là trung điểm BE
Þ MF là đường trung bình ΔBDE
Þ F là trung điểm BD
Ta có: AC = 2AB, D là trung điểm AC
Þ \(AD = AB = \frac{1}{2}AC\)
Þ ΔABD cân tại A.
Mà F là trung điểm BD nên ΔABD cân tại A có đường trung tuyến AM đồng thời là đường cao
Do đó AF ⊥ BD.
Suy ra AM ⊥ BD.