Cho tam giác ABC có AB = 2, BC = 4, CA = 3. a) Tính vecto AB. vecto AC, rồi

Cho tam giác ABC có AB = 2, BC = 4, CA = 3.

a) Tính \(\overrightarrow {AB} .\overrightarrow {AC} \), rồi suy ra cosA

b) Gọi G là trọng tâm của ABC. Tính \(\overrightarrow {AG} .\overrightarrow {BC} \)

c) Tính giá trị biểu thức S = \(\overrightarrow {GA} .\overrightarrow {GB} + \overrightarrow {GB} .\overrightarrow {GC} + \overrightarrow {GC} .\overrightarrow {GA} \)

d) Gọi AD là phân giác trong của góc BAC (D BC). Tính \(\overrightarrow {A{\rm{D}}} \) theo \(\overrightarrow {AB} ;\overrightarrow {AC} \)suy ra AD.

Trả lời

a) Ta có \(B{C^2} = {\overrightarrow {BC} ^2} = {\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)^2} = A{C^2} - 2\overrightarrow {AB} .\overrightarrow {AC} + A{B^2}\)

Suy ra \(\overrightarrow {AB} .\overrightarrow {AC} = \frac{{A{C^2} + A{B^2} - B{C^2}}}{2} = \frac{{{3^2} + {2^2} - {4^2}}}{2} = \frac{{ - 3}}{2}\)

Suy ra cos A = \(\frac{{\overrightarrow {AB} .\overrightarrow {AC} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|}} = \frac{{\frac{{ - 3}}{2}}}{{3.2}} = \frac{{ - 1}}{4}\)

b) Gọi M là trung điểm của BC

Suy ra \(\overrightarrow {AM} = \frac{1}{2}\left( {\overrightarrow {AB} + \overrightarrow {AC} } \right)\)

Ta có \(\overrightarrow {AG} .\overrightarrow {BC} = \frac{2}{3}\overrightarrow {AM} .\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right) = \frac{1}{3}\left( {\overrightarrow {AC} + \overrightarrow {AB} } \right).\left( {\overrightarrow {AC} - \overrightarrow {AB} } \right)\)

\( = \frac{1}{3}\left( {A{C^2} - A{B^2}} \right) = \frac{1}{3}.(9 - 4) = \frac{5}{3}\)

c) Gọi ma, mb, mc lần lượt là độ dài đường trung tuyến xuất phát từ đỉnh A, B, C

Ta có \({m_a} = \sqrt {\frac{{2(A{C^2} + A{B^2}) - B{C^2}}}{4}} = \sqrt {\frac{{2({3^2} + {2^2}) - {4^2}}}{4}} = \frac{{\sqrt {10} }}{2}\)

Suy ra AG = \(\frac{2}{3}{m_a} = \frac{{\sqrt {10} }}{3}\)

Ta có \({m_b} = \sqrt {\frac{{2(B{C^2} + A{B^2}) - A{C^2}}}{4}} = \sqrt {\frac{{2({4^2} + {2^2}) - {3^2}}}{4}} = \frac{{\sqrt {31} }}{2}\)

Suy ra BG = \(\frac{2}{3}{m_b} = \frac{{\sqrt {31} }}{3}\)

Ta có \({m_c} = \sqrt {\frac{{2(A{C^2} + B{C^2}) - A{B^2}}}{4}} = \sqrt {\frac{{2({3^2} + {4^2}) - {2^2}}}{4}} = \frac{{\sqrt {46} }}{2}\)

Suy ra CG = \(\frac{2}{3}{m_c} = \frac{{\sqrt {46} }}{3}\)

Vì G là trọng tâm tam giác ABC nên \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \)

Suy ra \({(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} )^2} = \overrightarrow 0 \)

\( \Leftrightarrow G{A^2} + G{B^2} + G{C^2} + 2\overrightarrow {GA} .\overrightarrow {GB} + 2\overrightarrow {GB} .\overrightarrow {GC} + 2\overrightarrow {GA.} \overrightarrow {GC} = 0\)

\( \Leftrightarrow G{A^2} + G{B^2} + G{C^2} + 2S = 0\)

\( \Leftrightarrow S = - \frac{{G{A^2} + G{B^2} + G{C^2}}}{2} = - \frac{{29}}{6}\)

d) Vì AD là phân giác trong của \(\widehat {BAC}\)

Nên \(\frac{{DB}}{{DC}} = \frac{{AB}}{{AC}} = \frac{2}{3}\)

Vì D thuộc BC nên \(3\overrightarrow {DB} = - 2\overrightarrow {DC} \)

\( \Leftrightarrow 3(\overrightarrow {AB} - \overrightarrow {A{\rm{D}}} ) = - 2(\overrightarrow {AC} - \overrightarrow {A{\rm{D}}} )\)

\( \Leftrightarrow 3\overrightarrow {AB} - 3\overrightarrow {A{\rm{D}}} = - 2\overrightarrow {AC} + 2\overrightarrow {A{\rm{D}}} \)

\( \Leftrightarrow \overrightarrow {A{\rm{D}}} = \frac{3}{5}\overrightarrow {AB} + \frac{2}{5}\overrightarrow {AC} \)

Suy ra AD2 = \(\frac{9}{{25}}A{B^2} + \frac{{12}}{{25}}\overrightarrow {AB} .\overrightarrow {AC} + \frac{4}{{25}}A{C^2} = \frac{9}{{25}}{2^2} + \frac{{12}}{{25}}.\frac{{ - 3}}{2} + \frac{4}{{25}}{3^2} = \frac{{54}}{{25}}\)

Vậy AD = \(\frac{{\sqrt {54} }}{5}\).

Câu hỏi cùng chủ đề

Xem tất cả