Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau

Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho HM = MK.

a) Chứng minh: Tứ giác BHCK là hình bình hành.

b) Chứng minh BK vuông góc AB và CK vuông góc AC.

c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang cân.

d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì để tứ giác GHCK là hình thang cân.

Trả lời
Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF cắt nhau  (ảnh 1)

a) Xét tứ giác BHCK có:               

MH = MK và MB = MI

Suy ra: BHCK là hình bình hành.

b) Vì BHCK là hình bình hành (chứng minh câu a) 

Suy ra: BK // HC và CK // BH (tính chất hình bình hành)

Mà CH AB và BH AC

Suy ra: BK AB và CK AC.

c) Vì I đối xứng với H qua BC nên BC là đường trung trực của HI 

Mà M thuộc BC, suy ra MH = MI (tính chất đường trung trực) 

\[MH = MK = \frac{1}{2}HK\]

Suy ra: \[MI = MH = MK = \frac{1}{2}HK\]

Do đó tam giác HIK vuông tại I hay HI IK

Mà BC HI (do BC là đường trung trực của HI)

Suy ra IK // BC 

Do đó BIKC là hình thang                  (1) 

Ta có BC là đường trung trực của HI, suy ra CI = CH 

Mà CH = BK (vì BKCH là hình bình hành) 

Suy ra BK = CI                         (2)

Từ (1) và (2) suy ra BICK là hình thang cân (dấu hiệu nhận biết)

d) Gọi giao điểm của BC và HI là J.

Vì BK // CH nên GHCK là hình thang

Để hình thang GHCK là hình thang cân thì \(\widehat {GHC} = \widehat {KCH}\)

\(\widehat {HCK} + \widehat {HCA} = 90^\circ \)\(\widehat {GHC} + \widehat {HCB} = 90^\circ \) (vì tam giác HJC vuông tại J)

Suy ra \(\widehat {HCA} = \widehat {HCB}\)

Do đó CH là đường phân giác của tam giác ABC 

Lại có CH là đường cao của tam giác ABC 

Suy ra tam giác ABC cân tại C

Vậy tam giác ABC cân tại C thì GHCK là hình thang cân.

Câu hỏi cùng chủ đề

Xem tất cả