Cho tam giác ABC. Chứng minh c.mc = b.mb khi b^2 + c^2 = 2a^2.
Cho tam giác ABC. Chứng minh c.mc = b.mb khi b2 + c2 = 2a2.
Lời giải
Ta có c.mc = b.mb
\( \Leftrightarrow {c^2}.{m_c}^2 = {b^2}.{m_b}^2\)
\( \Leftrightarrow {c^2}.\frac{{2\left( {{a^2} + {b^2}} \right) - {c^2}}}{4} = {b^2}.\frac{{2\left( {{a^2} + {c^2}} \right) - {b^2}}}{4}\)
Û 2c2(a2 + b2) − c4 = 2b2(a2 + c2) − b4
Û 2c2a2 + 2c2b2 − c4 = 2b2a2 + 2b2c2 − b4
Û b4 − c4 = 2b2a2 − 2c2a2
Û (b2 + c2)(b2 − c2) = 2a2(b2 − c2)
Û b2 + c2 = 2a2 (với b ≠ c).