Cho tam giác ABC cân tại A góc A < 90 độ, đường cao AH. Kẻ HK vuông góc AC

Cho tam giác ABC cân tại A \(\left( {\widehat A < 90^\circ } \right)\), đường cao AH. Kẻ HK AC (K AC).

a) Tính HC, HK, \(\widehat C\) nếu AH = 20 cm, AC = 25 cm.

b) Qua B kẻ đường thẳng song song với AH, đường thẳng này cắt AC tại điểm E. Kẻ BD AC (D AC). Chứng minh \(B{H^2} = \frac{{C{\rm{D}}.CE}}{4}\).

c) Gọi O là giao điểm của BD và AH. Chứng minh \(\frac{{BO}}{{DO}} = \frac{{A{\rm{E}}}}{{A{\rm{D}}}}\).

d) Kẻ KF BC (F BC). Chứng minh CF = AC. sin3E.

Trả lời
Cho tam giác ABC cân tại A góc A < 90 độ, đường cao AH. Kẻ HK vuông góc AC (ảnh 1)

a) Xét tam giác AHC vuông ở H ta có

AC2 = AH2 + HC2 (định lí Pytago)

Hay 252 = 202 + HC2

Suy ra HC = 15 (cm).

Xét tam giác AHC vuông ở H có HK AC

Suy ra \(\frac{1}{{H{K^2}}} = \frac{1}{{A{H^2}}} + \frac{1}{{H{C^2}}}\) (hệ thức lượng trong tam giác vuông)

Hay \(\frac{1}{{H{K^2}}} = \frac{1}{{{{20}^2}}} + \frac{1}{{{{15}^2}}}\)

Suy ra HK = 12

Xét tam giác AHC có \(\sin C = \frac{{AH}}{{AC}} = \frac{{20}}{{25}}\)

Suy ra \(\widehat C \approx 53^\circ \)

b) Ta có BE // AH, AH BC

Suy ra BE BC

Hay tam giác BCE vuông tại B có BD AC (giả thiết)

Suy ra BC2 = CD . CE (hệ thức lượng trong tam giác vuông)

(2BH)2 = CD . CE

4BH2 = CD . CE

\(B{H^2} = \frac{{C{\rm{D}}.CE}}{4}\)

c) Kẻ AT // BD (T BE)

Mà BD AC suy ra AT AC, hay \(\widehat {E{\rm{A}}T} = 90^\circ \).

Xét tứ giác ATB có AT // BO, BT // AO

Suy ra ATBO là hình bình hành

Do đó AT = BO (tính chất hình bình hành)

Vì AH // BE nên \(\widehat {CAH} = \widehat {AEB}\) (hai góc đồng vị)

Xét DEAT và DOAD có

\(\widehat {CAH} = \widehat {AEB}\) (cmt);

\(\widehat {E{\rm{A}}T} = \widehat {{\rm{ADO}}} = 90^\circ \)

Suy ra  (g.g)

Do đó \(\frac{{AT}}{{{\rm{DO}}}} = \frac{{{\rm{EA}}}}{{A{\rm{D}}}}\) (tỉ số đồng dạng)

Mà AT = BO (chứng minh trên)

Suy ra \(\frac{{OB}}{{O{\rm{D}}}} = \frac{{A{\rm{E}}}}{{A{\rm{D}}}}\).

d) Xét tam giác KFC có CF = CK . sin \(\widehat {CKF}\)

Xét tam giác KHC có CK = HC . sin \(\widehat {KHC}\)

Xét tam giác AHC có HC = AC . sin \(\widehat {HAC}\)

Suy ra \(CF = AC.\sin \widehat {HAC}.\sin \widehat {KHC}.\sin \widehat {CKF}\)

\(\widehat {HAC} = \widehat E\) (hai góc đồng vị);

      \(\widehat {KHC} = \widehat E\) (cùng phụ với góc \(\widehat C\));

      \(\widehat {CKF} = \widehat E\) (cùng phụ với góc \(\widehat C\))

Do đó CF = AC. sin3E

Vậy CF = AC. sin3E.

Câu hỏi cùng chủ đề

Xem tất cả