Cho tam giác ABC cân tại A, đường cao AD, trực tâm H. Tính độ dài AD biết AH = 14 cm, BH = HC = 30 cm

Câu 28: Cho tam giác ABC cân tại A, đường cao AD, trực tâm H. Tính độ dài AD biết AH = 14 cm, BH = HC = 30 cm.

Trả lời

Tài liệu VietJack

Gọi H’ là điểm đối xứng H qua BC.

Suy ra D là trung điểm của HH’

Vì tam giác ABC cân tại A, AD là đường cao nên AD là trung tuyến

Suy ra D là trung điểm của BC

Xét tứ giác BHCH’ có

D là trung điểm của HH’ và BC;

BC và HH’ là hai đường chéo

Suy ra BHCH’ là hình bình hành.

Mà BH = CH nên hình bình hành BHCH’ là hình thoi

Do đó BH’ // CH, BH = BH’.

Lại có CH ⊥ AB (vì H là trực tâm của tam giác ABC) nên BH’⊥ AB

Hay tam giác ABH’ vuông tại B

Mà BD ⊥ AH’

Suy ra H’B2 = H’D . H’A

⇔ HB2 = HD . (2HD + HA)

⇔ 302 = HD . (2HD + 14)

⇔ 2HD2 + 14HD – 900 = 0

⇔ (HD + 25)(HD – 18) = 0

⇔ HD – 18 = 0 (vì HD > 0)

⇔ HD = 18

Ta có AD = AH + HD = 14 + 18 = 32 cm

Vậy AD = 32 cm.

Câu hỏi cùng chủ đề

Xem tất cả