Cho phương trình x2 + mx − 3 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn |x1| + |x2| = 4.

Cho phương trình x2 + mx − 3 = 0. Tìm m để phương trình có hai nghiệm phân biệt x1, x2 thoả mãn |x1| + |x2| = 4.

Trả lời

x2 + mx − 3 = 0

Þ ∆' = m2 + 12 > 0, m Î ℝ nên phương trình luôn có hai nghiệm phân biệt với mọi m.

Áp dụng định lí Ta-lét, ta có: x1+x2=mx1.x2=3

Khi đó: |x1| + |x2| = 4

Û (|x1| + |x2|)2 = 16

Û x12 + x22 + 2|x1.x2| = 16

Û (x1 + x2)2 − 2x1.x2 + 2|x1.x2| = 16

Û (−m)2 − 2.(−3) +2.|−3| = 16

Û m2 = 4 Û m = ±2.

Vậy m = ±2 là giá trị của tham số m cần tìm.

Câu hỏi cùng chủ đề

Xem tất cả